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Abstract

Coupled-cluster methods provide highly accurate models of molecular structure by explicit nu-
merical calculation of tensors representing the correlation between electrons. These calculations are
dominated by a sequence of tensor contractions, motivating the development of numerical libraries
for such operations. While based on matrix-matrix multiplication, these libraries are specialized to
exploit symmetries in the molecular structure and in electronic interactions, and thus reduce the
size of the tensor representation and the complexity of contractions. The resulting algorithms are
irregular and their parallelization has been previously achieved via the use of dynamic scheduling
or specialized data decompositions. We introduce our efforts to extend the Libtensor framework to
work in the distributed memory environment in a scalable and energy efficient manner. We achieve
up to 240× speedup compared with the best optimized shared memory implementation. We attain
scalability to hundreds of thousands of compute cores on three distributed-memory architectures,
(Cray XC30&XC40, BlueGene/Q), and on a heterogeneous GPU-CPU system (Cray XK7). As
the bottlenecks shift from being compute-bound DGEMM’s to communication-bound collectives as
the size of the molecular system scales, we adopt two radically different parallelization approaches
for handling load-imbalance. Nevertheless, we preserve a unified interface to both programming
models to maintain the productivity of computational quantum chemists.



1 Introduction

Tensor contraction routines are important kernels for quantum chemistry computation. The tuning
of these kernels is notoriously complex because of inherent computational characteristics such as load
imbalance, complex locality, memory requirements, etc. Multiple frameworks provide interfaces to
easily express the required computation by domain scientists. Mapping and executing these expressions
on the underlying architecture is the responsibility of the runtime.

Choosing the programming model abstractions for the most efficient use of the system is a common
challenge for many computational disciplines. Often, runtimes choose one abstraction (e.g. distributed
memory) and apply it to different architectures and concurrencies. The computational scientist often
selects one computational environment because of familiarity or develops multiple variants of the
computations to maximize efficiency across differing architectures. Obviously, this makes efficient
utilization of computational resources and code maintenance difficult.

Recent architectural developments targeting power efficiency motivates the use of lightweight
manycore- or accelerator-based architectures. Depending on the available memory capacity per node,
the computation dataset may fit in the shared memory or distributed memory. These architectural
variants influence the efficiency of programming abstractions and the optimization strategies.

In this paper, we introduce our effort to extend Libtensor framework to work in distributed mem-
ory environment. Although, we could have extended the tasking model used in Libtensor to work in
a distributed environment, our analysis shows that the associated data movement could impact the
efficiency at scale. Instead, we leverage the Cyclops Tensor Contraction Framework (CTF) to achieve
efficient data movement. We complement the CTF support of permutational symmetry with special
handling for other forms of symmetry properties needed for quantum chemistry computations, includ-
ing point-group and spin symmetries. Additionally, we exploit the capabilities of CTF to enable GPU
acceleration. The presented work will be integrated to the Libtensor release [1, 2]. This extension
allows up to 240× speedup compared with the best optimized shared memory implementation, in
addition to enabling the solution of new large-scale problems with highly-accurate CCSD methods.

This study shows the need to support tensor contractions engines with multiple programming
backends to achieve the most efficient use of architectural resources. These backends are hidden from
computational scientists behind a unified user interface. Each backend relies on a distinct program-
ming model. This way the computational scientist could express his indented computation once, while
the runtime provides the best backend suited for the target architecture. This multi-backend approach
is required for efficient data movement, which is one of the major scaling bottleneck in future extreme-
scale computing architectures. The impact of the choice of the programming model on data movement
has not been previously thoroughly investigated. We show in this study through empirical measure-
ments the impact of programming model on communication performance, hoping this experience and
methodology benefits other application domains. The first backend relies on Cyclops, which uses a
special cyclic data distribution for load-balancing computation and a contraction engine that adopts
a communication-avoiding adaptation of the SUMMA Algorithm [3] for matrix-matrix computation.
It uses a complex data mapping and distribution and coordinated communication primitives. The
second uses task-based model, which utilizes dynamic load-balancing without disruptive changes to
the data layout.

We contrast Libtensor multi-backend approach with NWChem, which extends the use of task-
ing models to distributed memory machines. We show that at scale, when performance becomes
communication-bound, the coordinated transfer approach (MPI collectives) used by the CTF backend
yields less data movement. At small scale, on a shared memory node architecture, the task-based
approach provides the best opportunity to leverage all symmetry properties of the computation to
maximize performance. We also present a strategy for optimizing energy-to-solution by up to 29%
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Table 1: Test cases for CCSD calculations.
P1 P2 P3 P4 P5

Molecular uracil methylated methylated nucleobase tetramer nucleobase tetramer
system uracil–water uracil–water (AATT) (AATT)

dimer cluster with FNO approximation
(mU—H2O) (mU)2—H2O

Basis set cc-pVTZ 6-311+G(d,p) 6-31+G(d,p) 6-311+G(d,p) 6-311+G(d,p)
Basis functions 296 302 489 968 968

Point group symmetry Cs Cs C1 C1 C1

Occupied/virtual 16/176 (A’) 23/184 (A’) 58/410 98/552 98/830
orbitals (by irrep) 5/91 (A”) 8/76 (A”)

based on dynamic voltage and frequency scaling (DVFS). We show the importance of adopting such
technique especially as the problem becomes communication-bound. Ultimately, this work demon-
strates the need to use multiple programming models for efficient execution. Simultaneously, we show
that these distinct models can be hidden from computational scientists using a unified interface.

The rest of this paper is organized as follows: Section 2 discusses related work. Section 3 presents
the experimental setup, the workload, and the software stack of Libtensor framework. In Section 4 we
discuss the computational characteristics of tensor contractions in quantum-chemistry computations
and the influence of programming models on optimization strategies. In Section 5 we present the
performance evaluation of software stack and the backend that delivers the best performance for each
architectures. In Section 6 we show the influence of the programming model on data movement and
thus the performance and energy. We conclude in Section 7.

2 Related work

Tensor computations are a natural extension of matrix computations to many dimensions; they are
used to solve many-body problems in physics, in particular in quantum chemistry and nuclear physics.
Most of the tools previously developed are specific to their applications and lack transferability.
Among those targeting large-scale distributed systems are TCE [4], the ACES/SIAL framework [5].
CFOUR [6], which target both distributed and shared-memory architectures, are also application-
specific. Recently, general-purpose tensor tools started to receive more attention, for example CTF [7]
and TiledArray [8].

Generally speaking, there are two primary challenges that all of these tensor tools face when
converting a physical problem into an efficient computer program. First, they need to provide an
interface that allows one to describe the physical problem as a set of tensor equations, and second,
there needs to be a runtime environment that is capable of computing those equations. TCE and
SIAL handle the complexity by enabling users to write an electronic structure operator and compute
its tensor representation. Programming is done through code generation in Fortran (TCE) or a
domain-specific programming language (SIAL). CTF and TiledArray provide a general programming
interface making them open to applications outside of electronic structure theory. A notable example
of using CTF in quantum chemistry computations is provided by the Aquarius package [9, 10].

From the parallel communication standpoint, the packages mentioned here use either a one-sided
model, for instance the use of global arrays in NWChem [11] and GTFock [12], or a two-sided model
such as MPI in CTF [7]. While providing attractive solutions for large-scale runs, they typically
suffer from large overheads on small machines. They typically rely on the aggregation of the physical
memory of many light-weight compute nodes in order to accommodate a large problem. Working in
a distributed memory environment influences many of their design choices. For instance, exploitation
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of some form of symmetry and sparsity can lead to complex communication patterns. All of these
packages face similar challenges, including how to load-balance the computation, how to manage
locality, and how to efficiently execute computation while providing an easy interface. They use either
a tasking model for load-balancing computation with simple data layout [13, 11, 12], or a complex
data layout with bulk synchronous communication [7]. A single programming model is used by these
packages for all problems and at all run scales.

Libtensor [1] started as a general-purpose tensor algebra library that targets problems that can be
solved within a single node. It adopted the shared-memory programming model and exploits multiple
forms of symmetry including permutational symmetry, spin symmetry, and point group symmetry to
minimize memory usage and floating point operation count. This work extends Libtensor support
to the distributed memory environment using multiple backend programming models with a unified
interface. We extended Libtensor to transparently choose the best performing programming model
without the need to interact with multiple computational chemistry packages.

3 Experimental setup

3.1 Molecular Systems

Table 1 summarizes computational test cases used in this study. These problems represent typical
molecular systems amenable to high-level electronic structure calculations. All the molecules used
here are of a closed-shell type; thus, they exhibit spin symmetry (equality between α and β molecular
orbitals). Tests P1 and P2 also feature point-group symmetry, resulting in the sparsity of tensor
quantities expressed in the molecular-orbital basis. In addition, some tensors are symmetric (or anti-
symmetric) with respect to the permutation of indices. These symmetries can be exploited to reduce
the amount of data and computations. Tests P4 and P5 have a large memory footprint, requiring
hundreds of tera-bytes.

The Libtensor interface allows computational scientist to express different symmetry properties
of tensors. Figure 1 shows the different forms of symmetry that Libtensor supports: permutational
symmetry, spin symmetry and point-group symmetry. The importance of such optimizations increases
with the scale and the dimensionality of the problem. These properties are expressed at the tile
granularity (as opposed to element-wise), thus tiles may have extra padding. By defining the data
properties rather than structuring the data explicitly, the mathematical expressions (contractions) are
greatly simplified using an equivalent to dense format expressions. Internally, the library executes the
computation while considering these properties.

3.2 Evaluated Computer Systems

HPC systems are growing in diversity to achieve energy efficiency. The studied systems, shown in
Table 2, represent a diverse set of architectures. Edison and Cori (Cray XC) use complex out-of-order
multi-issue multicore architectures (Ivy Bridge and Haswell respectively), whereas Mira (IBM BGQ)
uses light-weight simple in-order cores. Conversely, Titan (Cray XK7) relies on NVIDIA GPU ac-
celerators to improve the computational capability. All these architectures have moderate memory
capacity per node, thus large problems require the use of many of these nodes to ensure the prob-
lem fits in the physical memory. By contrast, the Carver node, four-socket Nehalem, couples very
large memory capacity (1 TB) to accommodate large problems coupled with out-of-core processing
efficiently implemented using local disk storage attached to the compute node. Systems relying on
distributed memory use specialized interconnects to efficiently transfer data between compute nodes.
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a) Permutational symmetry b) Spin symmetry c) Point group symmetry
fij = fji, t
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ji = −tabij , etc fxx = fyy

Figure 1: Libtensor supports multiple forms of symmetry properties: permutational, spin, and point
group.

Table 2: Systems used in this study.

Edison Titan Mira Cori Carver

Processor Intel AMD NVIDIA IBM Intel Intel
Ivy Bridge Interlagos Kepler A2 Haswell Nehalem-EX

Clock (GHz) 2.4 2.2 0.733 1.6 2.3 2.0
NUMA×Cores 2×12 2×8 1×14 1×16 2×16 4×8

DP GFlop/s 461 141 1314 204 1178 256
Memory (GB) 64 32 6 16 64 1000

System and System Software

Nodes 5,576 18,688 49,152 1630 1
Interconnect Dragonfly 3D torus + local PCIe 5D torus Dragonfly N/A

Complier Intel 16.0.0 Intel 13.0.1 nvcc 6.5 XLC Intel 16.0.0 Intel icc 13.0.1
BLAS MKL 11.3.0 MKL 11.0.0 cuBLAS 6.5 ESSL MKL 11.3.0 MKL 11.0.1

The connection radix increases from 3D torus, 5D torus to dragonfly with a corresponding reduction
in diameter.

Coupled-cluster computations typically involve many tensor contractions that are mapped to
matrix-matrix multiplications. Physical properties may be leveraged to optimize the computation
as discussed in Section 4. As the computations were dominated by DGEMM calls at small scale, on
all systems we used vendor optimized and threaded implementations of BLAS routines to maximize
performance.

3.3 Computational Chemistry and Libtensor

Coupled-cluster theory offers a hierarchy of practical, highly accurate and systematically improvable
methods for modeling electronic structure. Programming expressions in coupled-cluster theory are
most conveniently written in a tensor form, resulting in equations involving contractions and other
operations on multidimensional quantities.

Libtensor aids in expressing tensor computations by providing a simple programming interface that
enables one to code equations in a form that closely resembles actual mathematical expressions, partly
shown in Table 3 with details in [2]. This programming interface can be viewed as an internal domain-
specific language within C++. The expressions are backed by a native Libtensor computational engine
that uses a task-based programming model on shared memory parallel computers. The software stack
based on Libtensor is used in the implementation of coupled-cluster, equation-of-motion coupled-
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Figure 2: Libtensor stack for coupled-cluster computations with newly introduced distributed memory
support. Coupled-cluster computations are expressed in using a unified interface. The choice of the
backend depends on the target architecture.

cluster, and algebraic diagrammatic construction methods within Q-Chem [14], a general-purpose
electronic structure package. While providing a significant advantage in the speed of code development,
Libtensor demonstrates performance that is competitive with the best codes based on explicit matrix
multiplication and data handling [8].

In this work, the programming interface and expression evaluation component of Libtensor are
extended to support multiple backends. This new capability makes it possible to deliver several tensor
engines in a single binary executable so that the most efficient backend could be selected, as shown
in Figure 2. In addition to the native shared memory engine, Libtensor features a newly introduced
backend that targets distributed memory computers using CTF, which uses a bulk synchronous pro-
gramming model (MPI). The choice of a backend is based on the target architecture and is chosen
transparently by the runtime. However, we allow the user to override default choice of the backend,
for instance, the use of the distributed implementation in a shared memory environment.

3.4 Shared Memory Task-based Backend

The original backend used in Libtensor uses a tasking model in shared memory using threads [1].
Shared memory provides a unified name space thus simplifying expressing complex data layout.

The main complexity associated with leveraging the symmetry properties is that the computational
cost per equal tile becomes variable, depending on whether a tile is stored in its canonical fashion or
a symmetry operator needs to be applied. The tasking model facilitates dynamic computational
load-balancing, but typically makes it harder to optimize for locality. The tasking model incurs
scheduling overheads at queueing or dequeueing tasks. Distribution of task granularities typically
shows a wide variation with dominance of small tasks [15]. Achieving higher concurrency also involves
using smaller blocks. As such, a simple heuristic for load-balancing is important in attaining low-
overhead scheduling. We find it is often better not to coordinate read access of a given tile by
multiple threads as such coordination leads to excessive synchronization and impedes computational
load balancing.

3.5 Distributed-Memory, Bulk-Synchronous Backend

In this paper, we extend Libtensor to interface with the Cyclops Tensor Contraction (CTF) frame-
work [7] in order to provide capability in a disk-less, distributed memory environment. CTF support
is limited to permutational symmetry. To support other symmetry properties, such as spin-symmetry
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Table 3: Libtensor expressions programming interface.

Expression C++ code

cijkl =
∑

m aijmbmlk c(i|j|k|l) =

contract(m, a(i|j|m), b(m|l|k));

cijk = aijkbkji c(i|j|k) = mult(a(i|j|k), b(k|j|i));

cijkl = aikbjl c(i|j|k|l) = a(i|k) * b( j|i);

c =
∑

ijk aijkbijk c = dot product(a(i|j|k), b(i|j|k));

cij = aij + aji c(i|j) = symm(i, j, a(i|j));

cij = aij − aji c(i|j) = asymm(i, j, a(i|j));

and point-group symmetry, we adopted the approach of applying these symmetry properties, by cre-
ating sub-tensors, before handing them over to CTF for managing the distributed data layout. CTF
uses communication-avoiding techniques to reduce the volume of communicated data coupled with a
specialized memory mapping and data distribution on a virtual grid of processes. Moreover, CTF
leverages available memory to store redundant copies of the data, thus eliminating a substantial frac-
tion of the data movement from the critical path of computation. Finally, CTF creates a special
mapping between the global data structure to local data that preserves the permutational symmetry
properties and creates a balanced distribution of the computation.

A user-level Libtensor contraction operation does not typically map to a single call to CTF because
libtensor supports three forms of symmetry for efficient memory usage and computation, while CTF
supports only permutational symmetry. As such tensor generation and contraction through Libtensor
could differ from a direct implementation on CTF. Typically, a Libtensor contraction involves multiple
CTF contractions. To match our performance on CTF, a domain scientist would need to manually
implement the logic to leverage point-group symmetry and spin symmetry for high dimensional tensors.
Therefore, leveraging CTF through the productive Libtensor interface automates a tedious error-prone
process.

4 Coupled-Cluster Computations

Optimized coupled-cluster computations typically leverage physical properties to speed the computa-
tional kernels. For instance, exploiting symmetry allows for a reduction in the requisite memory and
computation. On the other hand, it poses challenges in load-balancing the computation, managing
locality, data distribution, regularity of the communication, and regularity of the computation. A
programming model could influence how to tackle these challenges. There is also an interaction of
techniques to handle these issues especially while exploiting symmetry properties to reduce memory
and computation requirements. In this section, we discuss these challenges and the interaction with
different programming models.

4.1 Tensor Index Mapping

Tensors are multidimensional arrays that, at their simplest form, could be indexed using a multidi-
mensional linear mapping. Many implementations use a more complex indexing of the elements to
improve locality. For instance, explicitly tiled blocks could be used to improve access locality. Libten-
sor uses this approach in its shared memory backend. Global address space abstractions adopted by
global arrays [16] allow extending that simple indexing to distributed memory, e.g. in NWChem. In
a distributed environment, the mapping function typically involves the process rank. The processors
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Figure 3: Performance scaling for small problems (P1 & P2 ), which fit in the physical memory of a
single node, on Cray XC30 (Edison). Problem P3 requires a large memory compute node (Carver)
to run on shared memory.

could be thought to have a linear topology, 2D torus topology, or higher dimension torus. A complex
mapping function for indexing could be used to leverage permutational symmetry for saving mem-
ory while allowing simple data distribution of the tensor into a regular multidimensional processors
topology. Two notable packages using this mapping are HPL on a 2D virtual torus, and CTF on a
multi-dimensional virtual torus topologies, e.g. IBM BGL/BGQ. The mapping of the virtual processor
topology to the physical topology could be challenging on some architectures, e.g. dragonfly in Cray
XC30.

4.2 Tensor Data Distribution

The data distribution of a tensor is critical to performance both in distributed memory machines and
on shared memory machines with non-uniform memory access (NUMA) attributes. With a linear
index mapping, the data distribution is typically more complex whereas a simple distribution creates
severe imbalance. Optimized distributed memory applications typically use a cyclic (or round robin)
distribution to balance the data distribution. The same approach is used in distributed memory models
using the partitioned global address space (PGAS) abstraction, such as global arrays. Even in shared
memory machines with non-uniform memory access (NUMA), such cyclic distribution is essential for
improving performance [15].

A more complex indexing, such as that used in CTF, allows a regular distribution of data using a
mapping function between the tensor dimension and the processes based on a virtual layout.

4.3 Tensor Index Mapping and Symmetry

Linear mapping (including the use of blocking) is typically the easiest to express different forms of
symmetry including permutational symmetry, point group, and spin symmetry. This simple mapping
is adopted in the shared memory backend of Libtensor and the distributed memory NWChem.

CTF successfully showed that permutational symmetry could be expressed with a more complex
mapping that allows a balanced data distribution. Expressing other forms of symmetry is a more
tedious task because of the difficulty of maintaining a balanced distribution of data. Thus, the dis-
tributed memory backend uses Libtensor’s native capabilities to express point group and spin symme-
try, but delegates the handling of permutational symmetry to CTF. Preserving symmetry properties
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while applying operators is influenced by the data representation, tiling factor, etc. Therefore, the
CTF-based implementation does not handle symmetry properties as efficiently as the case with simple
linear mapping and thus impedes our efforts to use it as a distributed memory back end.

4.4 Load Imbalance in Coupled Cluster Computations

In the Libtensor framework, the load imbalance in tensor contractions for coupled-cluster computations
stems from the fact that part of the data is stored in their canonical form, while others could be
deduced from applying a symmetry operator on the canonically stored blocks. Additionally, some
data blocks may contain solely zeros thus nullifying the need to perform any computations. As such,
the computation cost involving the same amount of data could significantly differ based on how the
data is stored. Trying to balance computation typically increases the chance of accessing non-local
data, thus creating another source of load imbalance: the non-uniform function of the cost of moving
the same amount of data. One additional source of load-imbalance is that tiling data rarely yields
equal partitions because the irregularity of the array dimensions. The dimensions of tensor are typically
dictated by the physical properties of the studied problem. All these factors lead to wide range of task
granularity, which was analyzed in a related study [15].

Distribution of computation in a balanced fashion requires accurate estimates of the cost of doing
computation and accurate estimate for the cost of moving data to the compute engine. Distribution
of work could also be simplified if the granularity of the work assignment is constant or has a small
variation. Dealing with load-imbalance inherent in coupled-cluster computations has two main ap-
proaches. The first relies on a tasking model to balance the distribution of tasks. The alternative is to
use complex data mapping to achieve load-balancing with static scheduling. Dynamic task scheduling
is favorable with varying task granularity, whether the variability arises from uneven floating-point
operations per data, uneven cost of moving data, or variably sized data tiles. The performance ad-
vantage of dynamic task distribution requires low overhead task distribution and relies on weighing
the performance advantage of work balancing against the performance degradation of ignoring locality
and possibility increasing data movement as detailed in Section 6.

Static scheduling is typically optimal for equal-granularity tasks. The CTF-based backend uses
such static scheduling relying on its data mapping strategy. This approach also allows better coordi-
nated transfers and locality aware data access. The data distribution is tied to the work scheduling.
Balancing data distribution typically uses some sort of cyclic assignment to avoid overloading a com-
putational node’s resources.

4.5 Locality versus Load-Balancing

Dynamic load-balancing typically requires frequent assignments of work based on the availability of
workers. This approach is typically used with a centralized queuing system of available tasks. An
alternative approach adopts work stealing between workers, where an initial work distribution is used,
then workers who finished their assignment try to move work from overloaded workers. In both cases,
the locality is difficult to maintain. Locality is typically leveraged with static work scheduling, where
data placement could be taken into consideration while assigning work. In the distributed environment,
exploitation of locality motivates the caching of recently used blocks either explicitly by the application
or implicitly through the runtime. Both approaches are used in global array-based implementations.
Managing locality is typically explicit in CTF framework as the data distribution and work scheduling
are static. Whenever the data distribution leads to a complex access pattern, CTF changes the layout
using a global exchange operation (data reshuffle) to simplify the access pattern during the next
computational phase. On the other hand, complex symmetry properties such as point-group and spin
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Figure 4: Scaling of the nucleobase tetramer-FNO (P4) problem on Edison, Cori, Mira, and Titan
(w/GPUs). Although performance is dominated by the communication time on all architectures, there
are benefits to increased concurrency. Although Cori and Titan have comparable peak performance
per node, Cori’s network ensures superior performance.

symmetry are not tedious to implement. Finally, as CTF leverages coordinated data transfers, which
imply extra synchronization, it also requires additional storage to hold communicated data — common
in distributed memory environments.

5 Performance Analysis

In this section, we leverage our distributed memory backend based on CTF for coupled-cluster compu-
tations and discuss the performance-limiting factors in different architectures. The first architecture
(Mira) is optimized for power-efficiency and presents a unique balance between in-node bandwidth
to memory and the inter-node communication bandwidth. The next two architectures (Edison, Cori)
rely on powerful compute nodes that are interconnected with the dragonfly topology that allows low
latency between compute nodes. Titan is accelerated by a powerful GPU architecture, but is, un-
fortunately, using an older generation Cray interconnect (3D Gemini). The fat memory node allows
solving large problems leveraging the shared memory model abstractions.

The compute kernels typically rely on vendor-optimized DGEMM libraries. This allows assessing
the machine balance in a fair fashion. It also allows focusing the analysis efforts on the programming
model efficiency in handling locality, load imbalance, data movement, etc.

5.1 Performance at Small Scale

For small problems that fit in the memory of a single compute node, we can directly compare the
shared memory programming models (LibTensor/tasking) with the distributed memory codes (LibTen-
sor/CTF, NWChem) by running one of more processes per socket. In Figure 3(a), we show that the
task-based backend provides a higher performance (4.3×) compared with the distributed memory
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backend (CTF) as the distributed memory version (based on CTF) is less effective in preserving the
symmetry properties as operator are applied to data. The challenges for supporting these forms of
symmetry with CTF is discussed in Section 4. The shared memory task-based backend reduces the
memory and the computational requirements, as well as the memory footprint by avoiding the re-
dundant states used to optimize the communication in CTF. NWChem extends the task model to
distributed memory by relying on the global-arrays abstraction. The performance of NWChem ver-
sion and the CTF version match each other in the 8-16 node range. However, in our experiments, we
observe that NWChem requires more nodes for the coupled-cluster CCSD computation (i.e. CTF is
more memory efficient).

NWChem uses the global-array abstraction to extend the use of the task model to the distributed
environment. It allows expressing complex symmetry properties in distributed environments and uses
dynamic load-balancing for work distribution. We do not intend in this study to carry a full compari-
son between these programming environments because the supported computational kernels by these
programming environments are different. Similar trends are observed for the P2 problem, 3(b). The
shared memory version outperforms the distributed memory version. The CTF version outperforms
NWChem implementation for this problem. Earlier studies show a similar performance scaling advan-
tage of CTF-based implementations compared with NWChem [11]. Moderately large problem such
as P3 can be executed on a node with a large physical memory (such as Carver). The distributed
memory implementations benefit from compute capability scaling with the available memory.

The Libtensor software stack provides the ability to use multiple programming model backends,
while providing a single interface for the computational scientists. The efficiency of these models
depends on the architectural configurations. The problems that could fit in memory change with each
new generation of architectures depending on the size of the physical memory.

5.2 Performance at Large Scale

In order to avoid out-of-core processing, large problems such as P4 and P5 require hundreds of
megabytes to multiple terabytes of memory. In a distributed environment, data replication (and
caching) techniques are also used for communication-avoiding algorithms thus the memory require-
ments for efficient execution typically exceed the bare-minimum requirements. Figure 4 presents the
scaling behavior of the P4 problem on different HPC platforms and the breakdown of the execution
time. In each system, we show the run configuration associated with the best performance. The results
show that performance starts with a large compute component — 42% on the Cray XC30 (Edison).
The contribution of communication component grows as expected with the scale and eventually dom-
inates the execution time. We see that P4 problem does not scale beyond 1024 nodes (24576 cores)
and similar trends are observed on IBM BGQ (Mira) where the contribution of the communication
time to the total execution is slightly less because the ratio of the interconnect communication capa-
bility to the compute power of the lightweight core is higher compared with other architectures. The
improvement in core computational power by the Intel Haswell reduces the DGEMM time on Cori,
while the communication has not improved given the same Aries interconnect is used by both Edison
and Cori. For the GPU-accelerated architecture, Titan, we observe that computation is a tiny fraction
(less than 3%) of the total execution time. The computational capability afforded by the compute
node (principally the accelerator) is not matched by the interconnect: Cray’s previous generation torus
interconnect (Gemini). Note, time spent in communication time on Edison (Cray Aries interconnect)
is significantly lower at comparable concurrency. Using the Libtensor stack, we are able to run large
coupled-cluster computations that were not possible on fat-memory shared memory machines, such as
P5 (no frozen natural orbitals (FNO) optimization). The achieved improvement in time to solution is
up to 240× compared with the highly optimized shared memory implementation for the P4 problem.
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Figure 5: Scaling of the nucleobase tetramer (P5) problem (much larger) on different supercom-
puting architectures, Edison, Mira, and Titan. Libtensor scales to hundreds of thousands of cores.
Note, Cori’s data partition does not have enough nodes to study the scaling for this size problem.

The main performance-dominant factor of Libtensor remains the communication component, when
scaling to hundreds of thousands of cores.

5.3 Performance Tuning At Scale

So far we presented the best configuration for performance at scale. This typically involves tuning
across multiple parameters. In this section we show that the impact of tuning the balance between
the number processes and number of threads per node. As the CTF backend of libtensor only uses
the master thread for communication, the level of injection concurrency is a function of the number
processes per node.

Whereas CTF nominally requires a power-of-two number of processes, on Edison, with 12 cores
per socket, the use of threads allows for fully exploiting its non-power-of-two core count (24) by the
MKL library when executing DGEMM. Otherwise, small improvements are observed with threads
compared with the use of processes. In Figure 6, we show that on Mira using one process per node
and 64 threads provides the best performance.

Having one process per node simplifies the use of hardware-accelerated collectives. Interestingly,
the communication and the computation part affect each other because both the compute and the
communication data are brought to the chip because the network controller is integrated on-chip. On
Titan, moderate concurrency (2 processes per node sharing the 1 GPU) improves the communication
for P4 problem. The compute part is not affected because it is mostly done by GPUs. Increasing the
concurrency further reduces the message size and possibly creates more contention in the interconnect.
Consequently, we observe an increase in the communication time with more than two processes per
node for the P4 problem. This issue exacerbates at scale with the P5 problem where we observe that
performance degrades with any increase in process concurrency beyond a single process.

This data suggests that no single policy is adequate for all platforms. Even on the same platform,
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Figure 6: Run time as a function of the balance between processes and threads for fixed hardware
concurrency. Observe on-node DGEMM time is relatively constant, but inter-node communication
time varies substantially.

one must tune the available parallelism for maximum performance. Automatic setting of these config-
uration parameters is an interesting problem that we leave as a future work. A user of this software
is advised to evaluate multiple test configurations before conducting a long running computation.

These results show that CCSD computations are communication-bound at scale, especially when
using accelerator-based technologies such as GPUs. The data movement, its volume and pattern, influ-
ences the performance. In turn, data movement is influenced by the algorithm and the programming
model (e.g. task-based or orchestrated collectives).

5.4 Energy to solution

Given that the time spent in communication dominates the execution time, we explored techniques
to reduce the energy-to-solution. To achieve this objective, we explored the use of dynamic voltage
and frequency scaling (DVFS) [17] feature in Intel Haswell (Cori). Contrary to the conventional
wisdom that optimal time to solution yields an optimal energy to solution (race-to-halt), DVFS opens
the chance to reduce the energy by increasing the execution time. Cori shows a factor of 2.26× in
total node power consumption between the minimum and the maximum, which is substantially higher
than Edison difference (only 50%). DVFS reduces the performance of the node without significantly
impacting the communication speed. As such, wasting energy while waiting for long communication
events does not help in conserving energy.

We explored the use of energy×delay metric [18] used in electronic circuit design to guide the
heuristics for choosing optimal frequency. As shown in Figure 7, the energy×delay suggests that
decreasing the frequency as we scale maintains a reasonable energy use by the compute nodes. Up
to 29% improvement in energy-to-solution is achievable with this technique. The only impediment
in enabling such energy optimizations in our software framework is that compute facilities typically
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charge users per cpu-hour (instead of KWh). As such the most performant solution is the most
favorable from the user perspective.

6 Data Movement and Programming Model

In this section, we contrast the data movement of tasking-based models with bulk synchronous models
to show the importance of switching the programming model as we scale computation to the point
where application execution becomes communication-bound. Tasking models make the computation
(or balancing it) a first priority, which is justified when data movement is not the main bottleneck (e.g.,
DGEMM-dominated execution time). These models make it harder to coordinate data transfers. At
large scale, the performance underpinnings of NWChem’s tasking model compared with LibTensor’s
CTF collective model are grounded in the inherit communication requirements for each. However,
the lack of orchestration leads to superfluous data movement when executing task-based models in
distributed memory.

We constructed an experiment to measure the actual inter-node data movement when performing
a matrix-matrix multiplication using three different implementations. The first is the style of matrix-
matrix multiplication used in CTF, the second is the corresponding operation in global arrays with
static scheduling, while the third uses dynamic workload balancing in global arrays (NWChem). The
choice of this simple experiment is to isolate the impact of programming model on data movement,
without undue additional complexity in handling symmetry properties.

First, let us consider the fundamental bounds on inter-node data movement. Prior analysis [9]
shows that a tensor contraction could be defined as a generalized SUMMA algorithm and the com-
munication volume is asymptotically the same. SUMMA is also shown to be communication optimal
assuming no extra memory is used to apply communication-avoiding optimizations. Both CTF [9]
and NWChem [12] use adaptations of the SUMMA algorithm. They apply communication-avoiding
techniques: CTF algorithmically applies partial data replication (2.5D algorithm) and global-array
implementations apply runtime block caching. Considering the data needed to carry out the compu-
tation, Solomonik analysis [9] shows that the communication lower bounds are asymptotically the same
for both implementations, given an appropriate choice of a tiling size, which influences the amount of
data padding and memory used.

The constrained-memory lower-bound of communication is estimated by Ω(n2/
√
p) [19], where

n is the matrix dimension and p is the process count. For unbounded memory the lower bound is
reduced to Ω(n2/p2/3). For the communication-optimal matrix-matrix multiplication case, we esti-
mate the greatest lower-bound of the data movement between nodes as 3 × n2/p2/3, and call it the
Communication Optimal Greatest Lower Bound metric (COGLB metric)1. In a memory constrained
case (2D), each processor needs to hold n2/

√
p portion of the data. In the communication optimal

case, each processor should have enough memory to hold a larger partition of the input matrices (A
and B) estimated by n2/p2/3 words [20]. Having such portions of data could involve at most n2/p2/3

words of data movement per input matrix. The reduction of the results also requires each process
to send/receive n2/p2/3 words of the result matrix C. Based on these assumptions, the lower-bound
should be at most 3×n2/p2/3. Starting with a portion of the input matrices that overlap with workload
assignment could reduce the volume of communication of the input matrices. In our experiment, the
result matrix initially has some zero elements. Having nonzero elements could create a need for an

1COGLB is provided as a rough metric to compare the trends with increasing parallelism and contrast different
implementations. It involve some simplifying assumption regarding initial data layout, process count, memory availability,
etc. A tighter bound could estimated if we incorporate some algorithmic parameters. This analysis is beyond the scope
of this work.
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Figure 7: Energy consumption with different execution times for the methylated cluster (P3) prob-
lem on Cori. As we strong scale the problem, reducing the frequency becomes essential in reducing
energy to solution. The energy-delay product provides a reasonable guide for optimal configuration.
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Figure 8: Matrix-Matrix multiply using adaptations of SUMMA algorithm. The bulk synchronous
version, adopted in CTF, relies on MPI collectives to carry out the communication. Based on memory
availability, replicated state is used to reduce communication. The point-to-point version used in
global array uses one-sided get and accumulate primitives to carry out the communication. The
communication volume per process should ideally be the same for identical problem configurations
and memory usage.

additional data movement. Receiving (or sending) data is typically matched by sending (or receiving)
data, but hardware accelerated remote direct memory access (RDMA) communication mechanisms
eliminate the need to double-count the same transfer at both ends of the communication.

A compute node can be thought as single source of data movement. Processes within a node ideally
communicate through the shared memory. For purposes of this validation experiment, we will use
Edison as the Cray Aries network chip exports interconnect performance counters. The measurements
of the network traffic is based on reading the interconnect performance counters (Cray Aries used
in XC30 series) during the execution of the computation kernel. The measured data movement as
reported by these counters is for a single node because they are symmetric given the regularity of the
problem and the even distribution. The interconnect counters capture these traffics at the initiator
side, while at the remote side they appear as direct access to the memory. This helps in avoiding
double-counting the traffic in the interconnect. A sent data are either a “put” operation or a request
for a get operation. A received data is a response to a “get” request. Whether at the application
level a broadcast operation or point-to-point operations are used, the runtime translates these requests
into send or receive transfers. The volume of communication could be affected by how processes are
mapped to nodes, which cannot be controlled on Edison.

Given that multiple processes share the same node, some fraction of the inter-process commu-
nication happens internally within the node and does incur interconnect traffic. For the conducted
experiments, this intra-node communication (via shared memory) does not exceed 25% of the total
communication volume and is not captured by the interconnect performance counters.

A basic distributed Matrix-Matrix multiplication algorithm is depicted in Figure 8. The commu-
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Figure 9: Data movement measure by interconnect performance counters for distributed Matrix-Matrix
multiplication (16K square matrices) using different algorithmic variants (CTF uses 2.5D communica-
tion avoiding implementation, and the global array (GA) implementations uses SRUMMA variants).
Data movement in CTF based version is significantly lower than the one-sided variants. Interconnect
performance counters capture only off-node traffic and include all overheads by the communication
protocol. We contrast the empirical measurements with the Communication-Optimal Greatest Lower-
Bound (COGLP) metric.

Table 4: Matrix Multiplication Kernels.
Kernel CTF GA GA

DGEMM DGEMM Matmul patch

Scheduling static static dynamic

Compute by owner owner any

Communication broadcast, get, get,
primitives reduce put accumulate

nication part is coordinated using an MPI broadcast across a row and a column communication. CTF
uses an optimized variant (2.5D) that relies on replicated state to avoid excessive communication. De-
pending on the available memory CTF uses c replicas of each block and upon completion the results
are reduced. The global arrays implementation uses a variant (called SRUMMA [21]) based on non-
blocking get operations to fetch blocks of data, then do computation locally before sending them back
to the destination. It overlaps communication with computation using a form of double buffering.
GA also provides interfaces for replicated (mirrored) state to reduce the volume of communication
at runtime. Algorithms leverage caching to recently fetched blocks to reduce communication. The
caching of blocks happens on a per process basis and not on a per node basis. As such blocks fetched
by another process sharing the same node are typically fetched from the producer of the block when
needed.

NGA matmul patch is a routine to compute patches of matrix multiplication. It is typically used
with sparse matrices, or with higher dimensional tensors embedded into matrices. This routine mimics
the algorithmic pattern used in the tensor contractions in NWCHem. The routine uses a get-compute-
accumulate model, which is typically used for dynamic load-balancing in NWChem. In contrast,
GA DGEMM uses an owner compute model because it leverage locality and regularity in the data
structure. As such the results of the computation are always accumulated to the local portion of

19



the array; “sent data” component to remote nodes does not exist. Obviously this is efficient only for
evenly distributed data that has balanced computation associated with them. Table 4 summaries the
key attributes for each of the matrix multiplication variants.
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Figure 10: Data movement for small Matrix-Matrix (4K square matrices) multiplication for different
programming models. With strong scaling, the data movement of the one-sided implementation could
approach the CTF version with strong scaling due to effective caching of blocks.

CTF relies on MPI runtime for creating coordinated transfers (through broadcast) from the pro-
ducers to all consumers along the row and column communicator. Owner compute rule is used, but if
data is replicated, then MPI reduction is used to have optimized accumulation of the results. The CTF
authors introduced a communication-avoiding technique (2.5D [22, 9]) to reduce the communication
by redundantly copying the blocks of data to different nodes depending on the availability of memory.

Figure 9 shows the volume of communicated data per node for the various implementations for
different processes per node. The first observation is that data movement using CTF is typically lower
than that associated with GA DGEMM or NGA Matmul patch. NGA matmul patch, which trades
optimizing locality of access for attempting to load-balance computation. As such the amount of
data movement per node could be 3.96× the optimized MPI version for the 32 nodes × 16 processes
configuration. Increasing the process concurrency per node, we see that coordinated transfers could
keep communication volume constant, especially for large matrices (n=16K) at low concurrency (32
nodes). MPI protocol could switch get-based protocol with put-based protocol without impacting
transfer volume. As shown in Figure 10, for small matrices (n=4K) at high concurrency (128 nodes
× 16 processes), we start seeing a performance advantage of dynamic load-balancing. At this point
the problem stress the latency of the interconnect rather than the bandwidth.

In our experiments for CCSD computations, Section 5, the memory constraints influences the
lowest number of nodes that could be used to run the problem. Therefore, Figure 9-32-node is the
most dominant use scenario as we use multiple matrices with different sizes, multiple use scenarios
could be encountered within each run.

We observe that CTF follows the node-base COGLB metric (constant per per node) on 32 nodes.
As we strong scale, we observe a change in behavior to following proc-based COGLB metric. We
attribute this change to runtime change in protocol for broadcast and reduction operations. The
runtime could optimize to reduce latency by issuing more point-to-point messages, thus increasing
the volume of traffic. For global array-based implementations for the small matrix (n = 4K) at 128
node runs, we observed the node-based COGLB being followed due to effective caching of blocks.

20



Otherwise, the proc-based COGLB correlates better with the data movement for almost all other
runs. This indicates that no-optimizations are used at the node level for the global array based
implementation. For CTF, MPI typically uses a hybrid protocol for reductions and broadcasts. For
instance, a broadcast of a block is communicated once through the interconnect to the node, then
shared memory broadcast is used to distributed data locally within the node. We could easily observe
that the data movements measurements follow more closely the per process estimate rather than the
per node estimate for most runs. This illustrates more uncoordinated communication behavior at the
node level. As we scale problems, we also notice the per-node bound approaching the per-process
bounds because a larger fraction of the communication happens with external nodes.

One could easily conclude from these experiments that the programming model and its runtime
have a great influence on the data movement and the efficiency of the implementation. We could
see that the same algorithm (i.e., CTF) at small scale with large matrices has totally different data-
movement trends compared with at large scale with small matrices. Although, communication-avoiding
algorithms benefit from higher memory availability (small problems with large process counts) to
reduce data movement, the runtime may switch broadcast protocol to reduce latency thus increasing
data movement.

The need for coordinated transfers is not a concern in shared memory architectures because memory
could be thought of as a network of constant diameter (one). Additionally, cache reuse between
different cores still proves to be a hard problem, especially if the synchronization between cores is
high compared with the compute time. Overall, we find the benefit of leveraging the full symmetry
properties and the use of load-balancing technique in shared memory to outweigh the benefit of
coordinated transfers. Thus, the tasking model backend outperforms the distributed memory backend
(CTF) when a problem fits in shared memory.

7 Conclusions

Scalability in extreme-scale computing is typically determined by the efficiency of the communication
component of execution. We extended the Libtensor framework to work in a distributed memory
environment, achieving up to 240× speedup. Although we leveraged the best known approaches to
optimize for data movement, we show that coupled-cluster computations could spend more than 90% of
their execution time in communication, especially on architectures accelerated by GPUs. In this study,
we show that the programming model has a large influence on the volume of data movement, in addition
to the algorithm used. Specifically, we observe that extending task-based models, in order to affect
load-balancing, to the distributed memory environment could lead to higher data movement compared
with bulk-synchronous models with coordinated transfers. However, tasking models delivered the best
performance at small scale, i.e., within shared memory. As such, our extension of Libtensor uses
multiple programming model backends, while unifying the interface for domain scientists in order to
provide consistently good performance across scales ranging from a single shared memory node to
supercomputers with hundreds of thousands of cores. We show the opportunity for optimizing for
energy consumption for coupled cluster computation by up to 29% using DVFS.

Libtensor now allows computational scientists to use a single framework for coupled-cluster com-
putations at different scales with highly efficient execution.
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